System Biosciences

MSCV-hspCas9-T2A-Puro-H1-gRNA linearized all-in-one SmartNuclease Lentivector Plasmid

(No reviews yet) Write a Review
SKU:
CASLV320PA-1
Availability:
Usually Shipped in 5 Working Days
Size:
10 rxn
Shipping Temperature:
Blue Ice
  • MSCV-hspCas9-T2A-Puro-H1-gRNA linearized all-in-one SmartNuclease Lentivector Plasmid
  • MSCV-hspCas9-T2A-Puro-H1-gRNA linearized all-in-one SmartNuclease Lentivector Plasmid
£734.44

Description

MSCV-hspCas9-T2A-Puro-H1-gRNA linearized all-in-one SmartNuclease Lentivector Plasmid. Cat# CASLV320PA. Supplier: SBI System Biosciences

Overview

Genome editing in transfection-resistant cells
When you want to create stable Cas9 editing cell lines and/or would like to edit the genome of a cell line that is resistant to transfection by plasmids, turn to one of SBI’s Cas9 SmartNuclease Lentivector Systems. Available as pre-linearized, ready-to-clone lentivector plasmids, the MSCV-hspCas9-T2A-Puro-H1-gRNA All-in-one Cas9 SmartNuclease™ Lentivector expresses human codon-optimized Cas9 wild-type nuclease from the strong MSCV promoter, includes the puromycin selection marker, and delivers gRNA from an H1 promoter.
 
 
  • Conduct genome editing and engineering in difficult-to-transfect cell lines
  • Simultaneously deliver Cas9 and gRNA from a single lentivector
  • Drive Cas9 expression from the MSCV promoter, for high expression in hematopoietic and stem cells
  • Perform in vivo engineering of model organisms
  • Supports synthetic biology applications, gene- and cell-based therapy development, and genome-wide functional screening
Why an HR targeting vector is a recommended
Even though gene knock-outs can result from DSBs caused by Cas9 alone, SBI recommends the use of HR targeting vectors (also called HR donor vectors) for more efficient and precise mutation. HR donors can supply elements for positive or negative selection ensuring easier identification of successful mutation events. In addition, HR donors can include up to 6-8 kb of open reading frame for gene knock-ins or tagging, and, when small mutations are included in either 5’ or 3’ homology arms, can make specific, targeted gene edits.
Not sure whether you need a CRISPR/Cas9 plasmid, purified protein, or mRNA?
Use this table to choose the CRISPR/Cas9 product that’s right for you:
 
 

How It Works

Genome engineering with CRISPR/Cas9

For general guidance on using CRISPR/Cas9 technology for genome engineering, take a look at our CRISPR/Cas9 tutorials as well as the following application notes:

CRISPR/Cas9 Gene Knock-Out Application Note (PDF) »
CRISPR/Cas9 Gene Editing Application Note (PDF) »
CRISPR/Cas9 Gene Tagging Application Note (PDF) »

CRISPR/Cas9 Basics

Through careful selection of the target sequence and design of a donor plasmid for homologous
recombination, you can achieve efficient and highly targeted genomic modification with CRISPR/Cas9.

The system

 

Cas9 protein—uses guide RNA (gRNA) to direct site-specific, double-strand DNA cleavage adjacent to a protospacer adapter motif (PAM) in the target DNA.

gRNA—RNA sequence that guides Cas9 to cleave a homologous region in the target genome. Efficient cleavage only where the gRNA homology is adjacent to a PAM.

PAM—protospacer adapter motif, NGG, is a target DNA sequence that spCas9 will cut upstream from if directed to by the gRNA.

The workflow at-a-glance

DESIGN: Select gRNA and HR donor plasmids. Choice of gRNA site and design of donor
plasmid determines whether the homologous recombination event results in a knock-out,
knock-in, edit, or tagging.

CONSTRUCT: Clone gRNA into all-in-one Cas9 vector. Clone 5’ and 3’ homology arms into HR
donor plasmid. If creating a knock-in, clone desired gene into HR donor.

CO-TRANSFECT or CO-INJECT: Introduce Cas9, gRNA, and HR Donors into the target cells
using co-transfection for plasmids, co-transduction for lentivirus, or co-injection for mRNAs.

SELECT/SCREEN: Select or screen for mutants and verify.

VALIDATE: Genotype or sequence putative mutants to verify single or biallelic conversion.

View AllClose